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Table J-2
WATER CHEMISTRY DATA

FOR PALO VERDE GROUNDWATER BASIN
 SOLAR MILLENIUM, LLC 

BLYTHE SOLAR POWER PROJECT 
RIVERSIDE COUNTY, CALIFORNIA

STATE WELL NUMBER 
(DWR)

STATE WELL NAME 
(USGS) LATITUDE LONGITUDE

Ground 
Surface 

Elevation

Well 
Depth

Sample Date 
Mo/Yr

Temperature, 
degrees Celsius

Specific 
conductance,  

microsiemens per 
cm at 25 degrees 

Celsius

pH, 
standard

units

Bicarbonate,  
mg/L

Carbonate,  
mg/L

Nitrate plus 
nitrite as 
nitrogen

mg/L

Hardness as 
calcium 

carbonate
mg/L

Calcium,  
mg/L

Magnesium, 
mg/L

Sodium,    
mg/L

Potassium, 
mg/L

Chloride, 
mg/L

Sulfate,    
mg/L

Fluoride, 
mg/L

Silica as 
SiO2
mg/L

Arsenic,  
ug/L

Boron, 
ug/L

Iron,
ug/L

Manganese, 
ug/L

Selenium, 
ug/L

Total 
Dissolved 

Solids 
(TDS)
mg/L

333000114440701 008S021E12E001S 33.50002719 -114.7360705 241.44 15 25-Nov-80 20 1240 8 218 0 - 400 106 32.2 124 6.6 100 344 - - - - - - - 825
333000114440701 008S021E12E001S 33.50002719 -114.7360705 241.44 15 19-Dec-80 17.5 1080 8.3 188 0 - 350 88.8 31.7 117 5.9 94.1 303 - - - - - - - 736
333000114440701 008S021E12E001S 33.50002719 -114.7360705 241.44 15 12-Jan-81 17.9 1100 8.3 126 12 - 300 70.4 31.2 117 5.9 94.1 300 - - - - - - - 693
333000114440701 008S021E12E001S 33.50002719 -114.7360705 241.44 15 04-Feb-81 18.5 1200 8.3 157 0 - 310 71 31.7 130 7 102 305 - - - - - - - 730
333000114440701 008S021E12E001S 33.50002719 -114.7360705 241.44 15 25-Feb-81 18.5 1180 8.2 168 0 - 330 73.6 34.7 114 5.9 94.4 298 - - - - - - - 706
333000114440701 008S021E12E001S 33.50002719 -114.7360705 241.44 15 31-Mar-81 22.1 1240 8.1 184 0 - 360 88 32.9 116 5.5 96.2 314 - - - - - - - 745
333000114440701 008S021E12E001S 33.50002719 -114.7360705 241.44 15 21-May-81 21.1 1520 7.9 195 0 - 370 92 33.6 121 5.1 98 327 - - - - - - - 775
333000114440702 008S021E12E002S 33.50002719 -114.7360705 241.69 25 25-Nov-80 23.3 1090 8.5 160 0 - 330 86 28.3 112 8.2 90 309 - - - - - - - 714

333000114440702 008S021E12E002S 33.50002719 -114.7360705 241.69 25 19-Dec-80 21.8 1060 8.4 171 0 - 340 88.8 28.3 110 7.4 77.7 312 - - - - - - - 711

333000114440702 008S021E12E002S 33.50002719 -114.7360705 241.69 25 12-Jan-81 21.2 1120 8.3 171 0 - 330 82.4 29.3 110 6.7 92.7 292 - - - - - - - 698

333000114440702 008S021E12E002S 33.50002719 -114.7360705 241.69 25 04-Feb-81 22.2 1100 8.1 161 0 - 320 78 29.9 113 7 93 293 - - - - - - - 696

333000114440702 008S021E12E002S 33.50002719 -114.7360705 241.69 25 25-Feb-81 21.7 1150 8 183 0 - 360 92.8 30.3 98 6.7 95.5 294 - - - - - - - 711
333000114440702 008S021E12E002S 33.50002719 -114.7360705 241.69 25 31-Mar-81 22.2 1200 8 176 0 - 380 98 31.7 110 6.6 96.9 312 - - - - - - - 744
333000114440702 008S021E12E002S 33.50002719 -114.7360705 241.69 25 21-May-81 22.4 1600 7.8 187 0 - 400 104 33.6 113 6.2 100 347 - - - - - - - 799
333000114440703 008S021E12E003S 33.50002719 -114.7360705 241.92 40 25-Nov-80 22.7 1660 8 289 0 - 170 15.2 31.1 178 8.6 123 456 - - - - - - - 1090
333000114440703 008S021E12E003S 33.50002719 -114.7360705 241.92 40 19-Dec-80 21.1 1520 8.2 267 0 - 480 142 30.5 185 9 123 475 - - - - - - - 1100
333000114440703 008S021E12E003S 33.50002719 -114.7360705 241.92 40 12-Jan-81 21.8 1600 8.1 264 0 - 470 135 31.7 182 9.8 130 456 - - - - - - - 1080
333000114440703 008S021E12E003S 33.50002719 -114.7360705 241.92 40 04-Feb-81 22.6 1640 8 279 0 - 470 136 31.2 190 9.4 129 449 - - - - - - - 1080
333000114440703 008S021E12E003S 33.50002719 -114.7360705 241.92 40 25-Feb-81 20.5 1600 8 271 0 - 480 140 31.7 178 9 126 451 - - - - - - - 1070
333000114440703 008S021E12E003S 33.50002719 -114.7360705 241.92 40 31-Mar-81 22.5 1600 7.8 250 0 - 460 135 30.5 166 8.6 120 422 - - - - - - - 1010
333000114440703 008S021E12E003S 33.50002719 -114.7360705 241.92 40 21-May-81 22.3 2050 8.2 237 0 - 450 130 30.5 161 8.2 113 464 - - - - - - - 1030
333000114440704 008S021E12E004S 33.50002719 -114.7360705 241.41 100 25-Nov-80 22 1120 8.6 126 0 - 230 50 25.4 142 6.3 93 307 - - - - - - - 689
333000114440704 008S021E12E004S 33.50002719 -114.7360705 241.41 100 19-Dec-80 22.3 2000 8.1 281 0 - 470 133 34.2 311 8.6 228 541 - - - - - - - 1400
333000114440704 008S021E12E004S 33.50002719 -114.7360705 241.41 100 12-Jan-81 21.5 2220 8.1 274 0 - 470 136 31.2 304 8.2 233 549 - - - - - - - 1400
333000114440704 008S021E12E004S 33.50002719 -114.7360705 241.41 100 04-Feb-81 22.5 2250 8 253 0 - 420 118 30.5 513 9 246 538 - - - - - - - 1380
333000114440704 008S021E12E004S 33.50002719 -114.7360705 241.41 100 25-Feb-81 21 2300 8.1 248 0 - 400 112 29.3 334 9 256 562 - - - - - - - 1430
333000114440704 008S021E12E004S 33.50002719 -114.7360705 241.41 100 31-Mar-81 22.6 2280 8.2 214 0 - 310 80 26.4 364 9 263 530 - - - - - - - 1380
333000114440704 008S021E12E004S 33.50002719 -114.7360705 241.41 100 21-May-81 22.3 2400 8.2 235 0 - 290 76 24.4 359 9 238 564 - - - - - - - 1390
333057114360801 007S023E32M001S 33.5158602 -114.6030113 256 - 14-Feb-62 20 897 7.8 240 0 - 250 68 19 - - 97 100 - 15 - - - - - 507
333124114392301 007S022E34H001S 33.52335998 -114.6571796 245 114 15-May-57 - 3700 7.9 400 0 - 1000 270 81 540 7 920 540 0.6 30 - 280 - - - 2590
333131114392401 007S022E34H002S 33.52530437 -114.6574574 245 101 24-Mar-51 21.1 1290 7.9 260 0 - 320 80 29 180 4.8 250 130 - - - 180 - - - 802
333131114392401 007S022E34H002S 33.52530437 -114.6574574 245 101 15-May-57 - 1680 8 300 0 - 380 97 33 200 5 260 180 0.5 30 - 160 - - - 953
333140114390401 007S022E35C001S 33.5278043 -114.6519017 247 648 18-Oct-84 24 - - - - - 460 108 48 173 7 162 499 - - - - - - - 1200
333140114390401 007S022E35C001S 33.5278043 -114.6519017 247 648 18-Oct-84 23.8 - - - - - 560 144 49 219 5 165 523 - - - - - - - 1390
333140114390401 007S022E35C001S 33.5278043 -114.6519017 247 648 15-May-85 26 - 7.7 303 - - 650 170 55 316 7 448 516 - - - - - - - 1660
333140114390401 007S022E35C001S 33.5278043 -114.6519017 247 648 15-May-85 25 - 7.5 - - - 710 180 64 351 7 382 684 - - - - - - - 1820
333140114390401 007S022E35C001S 33.5278043 -114.6519017 247 648 16-May-85 25 - 7.6 - - - 650 172 54 225 5 406 317 - - - - - - - 1310
333140114390401 007S022E35C001S 33.5278043 -114.6519017 247 648 16-May-85 24 - 7.7 - - - 550 135 52 391 8 266 672 - - - - - - - 1700
333216114434901 007S021E25H001S 33.53780397 -114.7310708 255 472 18-Oct-84 35 - - - - 340 120 9 972 13 1320 552 - - - - - - - 3270
333216114434901 007S021E25H001S 33.53780397 -114.7310708 255 472 14-May-85 37 - 8.1 71 - - 450 155 15 1380 10 1840 804 - - - - - - - 4240
333216114434901 007S021E25H001S 33.53780397 -114.7310708 255 472 14-May-85 39 - 8 - - - 520 180 18 1620 12 2150 1100 - - - - - - - 5120
333216114434901 007S021E25H001S 33.53780397 -114.7310708 255 472 14-May-85 40 - 7.9 - - - 500 175 15 1480 12 2050 936 - - - - - - - 4710
333216114434901 007S021E25H001S 33.53780397 -114.7310708 255 472 14-May-85 36 - 7.8 90 - - 520 175 21 1350 11 1740 792 - - - - - - - 4120
333307114341101 007S023E21H001S 33.5519704 -114.5705108 260 - 15-Feb-62 19.4 1020 8.1 240 0 - 120 36 9 - - 110 140 - 11 - - - - - 604
333345114371901 007S022E13J001S 33.56252566 -114.6227346 260 128 15-May-57 - 1690 7.3 280 0 - 620 170 48 130 8.4 140 470 0.4 20 - 180 - - - 1130
333418114362401 007S023E18A001S 33.5715532 -114.6067065 255 486 14-Feb-62 25.6 1700 7.7 220 0 - 440 120 34 - - 290 230 - 12 - - - - - 976
333418114362501 007S023E17D001S 33.57163655 -114.6044286 255 176 14-Feb-62 24.4 1880 7.7 300 0 - 470 130 36 - - 250 380 - 17 - - - - - 1200
333428114385001 007S022E11Q001S 33.57446976 -114.6480133 256 - 14-Feb-62 18.9 1080 7.9 240 0 - 160 44 12 - - 130 140 - 12 - - - - - 623
333518114344301 007S023E09C001S 33.58835837 -114.5794003 261 - 12-Dec-56 - 1820 7.7 170 0 - 500 130 42 210 3.7 160 550 0.5 - - 320 - - - 1180
333522114410101 007S022E04P001S 33.5894693 -114.6844034 310 136 13-Aug-59 - 1750 7.9 180 0 - 160 41 14 280 5.1 270 230 1.5 25 - - 300 0 - 860
333522114410101 007S022E04P001S 33.5894693 -114.6844034 310 136 29-Feb-60 - 1950 7.9 200 0 - 210 53 18 350 - 350 290 2.2 - - 550 - - - -
333522114410101 007S022E04P001S 33.5894693 -114.6844034 310 136 25-May-61 28.3 2950 7.4 180 0 - 390 110 29 500 - 520 520 - 30 - 650 - - - 1840
333522114410101 007S022E04P001S 33.5894693 -114.6844034 310 136 22-Oct-62 27.8 3790 7.3 170 - - 510 120 46 - - 600 700 - 25 - - - - - 2140
333542114360501 007S023E05E001S 33.59502484 -114.6021789 265 - 15-Feb-62 21.7 997 7.8 230 0 - 230 63 17 - - 120 130 - 16 - - - - - 592
333544114483701 007S021E05F001S 33.59558004 -114.811074 - - 27-Apr-79 - - - - - - 160 54 5.7 2000 15 2400 1100 5.8 17 - - - - - 5640
333547114341501 007S023E04H001S 33.5964137 -114.5716224 262 115 12-Dec-56 - 1850 8 350 0 - 600 170 43 180 3.9 190 410 0.5 - - 70 - - - 1170
333600114360401 007S023E05D001S 33.5999969 -114.6018178 265 200 07-Feb-62 - 1290 7.8 293 - - 380 108 26 - - 147 225 - 14 - - - - - -
333600114360401 007S023E05D001S 33.5999969 -114.6018178 265 200 07-Feb-62 23.3 1290 7.8 290 0 - 380 110 26 - - 150 220 - 14 - - - - - 806
333600114360401 007S023E05D001S 33.6000247 -114.6019011 265 190 07-Feb-62 - 1290 7.8 293 - - 380 108 26 - - 147 225 - 14 - - - - - -
333600114360401 007S023E05D001S 33.6000247 -114.6019011 265 190 07-Feb-62 23.3 1290 7.8 290 0 - 380 110 26 - - 150 220 - 14 - - - - - 806
333610114383701 006S022E35R002S 33.60280236 -114.6444024 256 328 23-Oct-62 26.1 1320 7.4 260 0 - 310 79 28 - - 180 170 0.5 19 - - - - - 752
333612114434001 006S021E36R001S 33.6031772 -114.7288021 389.09 636 15-Jul-54 - 4700 7.6 100 0 - - 150 - 930 - 840 1060 4 - - 1540 - - - -
333612114434001 006S021E36R001S 33.6031772 -114.7288021 389.09 636 13-Jun-61 33.3 2350 7.8 120 0 - 120 36 8.5 440 5.5 400 410 1.1 32 - 620 - - - 1390
333612114434001 006S021E36R001S 33.6031772 -114.7288021 389.09 636 14-May-64 - 2300 7.9 120 0 - 130 38 8.1 470 6.5 420 440 3 27 - 1070 - - - 1470
333615114355401 006S023E32P001S 33.60421905 -114.5988455 265 430 11-Mar-60 - 900 7.8 230 0 - 220 68 11 100 5 120 90 0.1 - - - 200 - - 525
333615114355401 006S023E32P001S 33.60421905 -114.5988455 265 430 07-Feb-61 - 1150 7.6 250 0 - 320 91 22 120 3 150 150 0.4 21 - - 10 - - 690
333615114355401 006S023E32P001S 33.60421905 -114.5988455 265 430 23-Oct-62 25.6 1370 7.4 260 0 - 370 100 27 - - 180 190 0.5 18 - - - - - 787
333615114413201 006S022E32R001S 33.60423559 -114.6929594 334.2 560 11-Jun-63 - - - - - - - - - - - - - - - - - - - - -
333615114413201 006S022E32R001S 33.60423559 -114.6929594 334.2 560 11-Jun-63 - - - - - - - - - - - - - - - - - - - - -
333615114413201 006S022E32R001S 33.60423559 -114.6929594 334.2 560 11-Jun-63 - - - - - - - - - - - - - - - - - - - - -
333617114321501 006S023E35R001S 33.60474689 -114.5382882 270 08-Mar-56 - 1720 7.5 340 0 - 610 160 52 140 5.5 120 480 0.6 - 220 - - - 1130
333621114315801 006S023E36N001S 33.60585798 -114.5335658 270 248 14-Feb-52 - 7.6 310 0 - 1000 260 90 810 1100 870 0.4 - - - - - - -
333621114315801 006S023E36N001S 33.60585798 -114.5335658 270 248 08-Mar-56 - 3510 7.6 320 0 - 810 220 63 440 8.6 660 540 0.1 - - 630 - - - 2090
333621114315801 006S023E36N001S 33.60585798 -114.5335658 270 248 30-May-56 20 3380 7.6 320 0 - 790 - - 420 - 660 - - 25 - - - - - -
333621114315801 006S023E36N001S 33.60585798 -114.5335658 270 248 15-May-61 21.7 1260 7.8 300 0 - 410 120 29 120 4 120 240 0.5 25 - 120 - - - 806

WELL DATA 1 WATER CHEMISTRY



Table J-2
WATER CHEMISTRY DATA

FOR PALO VERDE GROUNDWATER BASIN
 SOLAR MILLENIUM, LLC 

BLYTHE SOLAR POWER PROJECT 
RIVERSIDE COUNTY, CALIFORNIA

STATE WELL NUMBER 
(DWR)

STATE WELL NAME 
(USGS) LATITUDE LONGITUDE

Ground 
Surface 

Elevation

Well 
Depth

Sample Date 
Mo/Yr

Temperature, 
degrees Celsius

Specific 
conductance,  

microsiemens per 
cm at 25 degrees 

Celsius

pH, 
standard

units

Bicarbonate,  
mg/L

Carbonate,  
mg/L

Nitrate plus 
nitrite as 
nitrogen

mg/L

Hardness as 
calcium 

carbonate
mg/L

Calcium,  
mg/L

Magnesium, 
mg/L

Sodium,    
mg/L

Potassium, 
mg/L

Chloride, 
mg/L

Sulfate,    
mg/L

Fluoride, 
mg/L

Silica as 
SiO2
mg/L

Arsenic,  
ug/L

Boron, 
ug/L

Iron,
ug/L

Manganese, 
ug/L

Selenium, 
ug/L

Total 
Dissolved 

Solids 
(TDS)
mg/L

WELL DATA 1 WATER CHEMISTRY

333621114315801 006S023E36N001S 33.60585798 -114.5335658 270 248 23-May-62 - 1320 7.9 310 0 - 420 110 34 120 3.2 140 240 0.02 19 - 180 - - - 819
333621114315801 006S023E36N001S 33.60585798 -114.5335658 270 248 22-May-63 - 1350 7.8 320 0 - 450 130 28 11 5.9 140 260 0.2 13 - 220 - - - 746
333621114315801 006S023E36N001S 33.60585798 -114.5335658 270 248 16-May-67 - 1610 7.7 330 0 - 540 140 42 140 4 210 280 0.6 - 200 - - - 979
333623114352101 006S023E32Q001S 33.60641345 -114.5899564 268 366 14-Sep-60 - 817 7.8 220 0 - 160 46 11 120 2 110 90 0.2 - - - - - 487
333623114361001 006S023E32N001S 33.6064134 -114.6035679 265 335 07-Feb-61 30.8 881 7.7 220 0 - 160 44 12 130 2.6 110 94 0.6 21 - - 10 - - 522
333627114420001 006S022E32K001S 33.60752438 -114.700793 362.8 464 12-Mar-54 - 1690 7.5 82 0 - - 75 - 280 - 300 300 - - - 1080 - - - -
333627114420001 006S022E32K001S 33.60752438 -114.700793 362.8 464 15-Jul-54 - 1670 100 M - - 70 - 280 - 300 - - - - 1180 - - - -
333627114420001 006S022E32K001S 33.60752438 -114.700793 362.8 464 13-Feb-59 - 2700 7.9 100 0 - - 140 - 460 - 410 670 - - - 1970 - - - -
333627114420001 006S022E32K001S 33.60752438 -114.700793 362.8 464 23-Sep-59 - 2480 8 100 0 - - 120 - 420 - 380 580 - - - 1630 - - - -
333627114420001 006S022E32K001S 33.60752438 -114.700793 362.8 464 23-May-61 - 1960 8.2 86 0 - 220 62 17 320 - 330 370 - 24 - 1200 - - - 1180
333627114420001 006S022E32K001S 33.60752438 -114.700793 362.8 464 04-Dec-61 - 2230 100 0 - - 100 - 370 - 360 460 1.8 - - 1410 - - - -
333627114420001 006S022E32K001S 33.60752438 -114.700793 362.8 464 14-May-64 - 2000 8 96 0 - 280 86 16 340 5.5 370 400 2 22 - 1440 - - - 1290
333627114420001 006S022E32K001S 33.60752438 -114.700793 362.8 464 20-May-05 - 2220 7.9 100 0 - 290 84 18 360 5 380 440 2.3 - - 1500 - - - 1340
333630114400101 006S022E34L001S 33.6083577 -114.6677365 330 360 25-May-61 - 2220 7.8 270 0 - 310 81 26 370 4.8 370 350 0.6 16 - - 0 - - 1350
333633114391001 006S022E35M001S 33.60919106 -114.6535694 260 310 07-Feb-62 20 1490 8 250 0 - 220 57 20 - - 200 180 - 8 - - - - - 797
333636114345501 006S023E33M001S 33.60983003 -114.5825673 270 100 16-Jun-58 23.9 - 7.7 230 0 - 250 70 17 96 0 110 99 0.2 - - - - 100 - 505
333636114345501 006S023E33M001S 33.60983003 -114.5825673 270 100 07-Feb-62 23.9 1010 7.7 250 0 - 270 78 19 - - 120 160 - 11 - - - - - 634
333636114535601 006S020E33C001S 33.61002387 -114.899688 - - 19-Apr-79 - - - - - - 170 67 0.6 800 16 950 450 6.3 38 - - - - - 2350
333637114343401 006S023E33K001S 33.61030225 -114.5769005 267 408 07-Feb-62 23.9 874 8 230 0 - 230 63 17 - - 93 92 - 11 - - - - - 478
333639114363901 006S023E31G002S 33.61085775 -114.6116238 265 135 13-Sep-51 - 2140 7.3 430 0 - 630 170 49 240 - 190 560 - - - 270 - - - -
333647114421401 006S022E32F001S 33.61307978 -114.704682 388.5 230 24-Sep-59 - 1360 7.8 110 0 - - 34 - 250 - 210 230 - - - 1280 - - - -
333647114421401 006S022E32F001S 33.61307978 -114.704682 388.5 230 23-May-61 - 1340 8.1 120 0 - 100 24 11 240 3.8 210 220 2.5 32 - - 240 - - 813
333650114343501 006S023E33G001S 33.61424659 -114.5772339 270 600 07-Feb-62 24.4 997 7.7 250 0 - 270 80 17 - - 120 160 12 - - - - - 621
333702114361601 006S023E32D001S 33.61724648 -114.6052348 268 316 23-Oct-62 24.4 1610 7.4 340 0 - 510 140 38 - - 140 380 0.6 21 - - - - - 1050
333711114360601 006S023E29N002S 33.6197464 -114.6024569 270 25 23-Oct-56 - 2050 8 210 0 - - 220 - 220 - 360 320 0.6 - - 300 - - - -
333716114355801 006S023E29N001S 33.62113527 -114.6002347 270 266 07-Feb-62 20 1480 7.7 290 0 - 500 140 34 - - 110 450 14 - - - - - 1060
333729114383801 006S022E26G001S 33.6247462 -114.6446805 260 79 28-Mar-67 21.7 2080 7.7 330 0 - 640 160 60 - - 190 500 0.8 20 - - - - - 1790
333729114383802 006S022E26G002S 33.6247462 -114.6446805 260 21 28-Mar-67 21.7 1930 7.5 250 0 - 670 150 74 - - 180 500 1.3 22 - - - - - 1180
333736114392501 006S022E26E001S 33.6266906 -114.6577364 270 64 28-Mar-67 23.3 1740 7.8 240 0 - 580 140 59 - - 210 350 0.8 16 - - - - - 1020
333736114392502 006S022E26E002S 33.6266906 -114.6577364 270 21 28-Mar-67 24.4 1420 7.4 280 0 - 470 120 41 - - 110 310 0.7 16 - - - - - 857
333737114403401 006S022E28G001S 33.62696834 -114.6769037 362 535 09-Feb-66 30.6 1550 7.7 210 0 - 120 38 7.1 - - 240 230 2 18 - 130 - - - 937
333737114415201 006S022E29G001S 33.6269683 -114.698571 392.5 350 08-Jan-47 - 1510 7.7 97 0 - 170 50 11 240 - 260 250 2.2 - - 1160 - - - -
333808114405701 006S022E21K001S 33.63552644 -114.6832262 375.3 323 - - 1500 7.6 140 0 - 150 44 10 260 2 270 200 3.6 - - 900 40 0 - 859
333836114405801 006S022E21B001S 33.64343179 -114.6837652 373.9 378 19-Sep-66 - 1450 7.8 180 0 - 150 50 7 240 6 230 210 2.7 - - 1200 40 0 - 835
333845114394901 006S022E22B001S 33.64585675 -114.6644035 367 372 28-Apr-66 - 1300 8.3 200 0 - 62 18 4 290 5 200 200 0.2 - - - 40 0 - 816
333846114413201 006S022E20A001S 33.64613448 -114.6930155 395.79 250 15-Jun-67 31.1 1510 8 76 0 - 180 55 10 - - 270 210 1.8 30 - - - - - 838
333847114375301 006S022E13Q001S 33.64641234 -114.6321804 268 116 23-Mar-67 22.2 1450 7.5 320 0 - 430 110 39 - - 140 260 0.5 22 - - - - - 867
333847114375302 006S022E13Q002S 33.64641234 -114.6321804 268 22 24-Mar-67 21.1 2630 7.7 300 0 - 600 130 69 - - 210 800 1.3 20 - - - - - 1730
333858114394901 006S022E15Q001S 33.64949555 -114.6645897 372.54 585 07-Sep-63 32.8 1390 8 200 0 - 66 22 27 - - 210 180 3.2 14 - - - - - 796
333858114394901 006S022E15Q001S 33.64949555 -114.6645897 372.54 585 16-Sep-63 33.3 1320 7.9 240 0 - 58 23 0.1 260 - 180 150 2.3 17 - - - - - 752
333905114385801 006S022E14L001S 33.65141219 -114.6502365 395 94 31-Mar-67 24.4 2600 7.7 300 0 - 580 140 59 - - 350 500 1 24 - - - - - 1540
333905114385802 006S022E14L002S 33.65141219 -114.6502365 295 34 31-Mar-67 23.9 2590 7.7 300 0 - 580 130 60 - - 360 500 0.9 22 - - - - - 1540
333911114402701 006S022E15M001S 33.65327876 -114.675079 396.6 315 23-Nov-59 - 1370 8 200 0 - 120 32 9.8 240 - 210 190 3.2 - - 570 - - - -
333911114402701 006S022E15M001S 33.65327876 -114.675079 396.6 315 06-Feb-62 20 1440 8 200 0 - 120 35 8 - - 220 220 - 10 - - - - - 863
333911114402701 006S022E15M001S 33.65327876 -114.675079 396.6 315 27-Mar-62 - 1380 200 0 - 120 34 8.8 250 - 220 190 3.5 - - 560 - - - -
333911114402701 006S022E15M001S 33.65327876 -114.675079 396.6 315 20-Jun-62 26.7 1400 7.4 190 0 - 120 33 10 - - 220 190 3.8 20 - - - - - 820
333911114402701 006S022E15M001S 33.65327876 -114.675079 396.6 315 12-Jun-63 - 1400 8.1 200 0 - 120 35 8.9 - - 220 190 - 19 - 450 - - - -
333912114420501 006S022E17L002S 33.6533565 -114.7021825 397 323 09-Sep-66 - 2350 7.5 95 0 - 430 160 10 320 10 320 600 2 - - 1500 40 0 - 1470
333912114421601 006S022E17L001S 33.65335649 -114.7052382 400 445 01-Apr-66 - 2060 7.7 67 0 - 350 120 10 300 8 380 400 - - - 1400 - - - 1250
333912114424501 006S022E18J001S 33.65335648 -114.713294 408 302 - - 2950 7.6 67 0 - 720 260 14 360 12 480 720 1.8 - - 2000 300 0 - 1880
333927114423501 006S022E18A001S 33.6574119 -114.7102356 406.88 298 - - 2000 7.7 61 0 - 400 140 12 320 9 370 500 1.6 - - 1200 40 0 - 1380
333939114382801 006S022E11R001S 33.6608564 -114.641903 276 77 27-Mar-67 24.4 2420 7.7 290 0 - 580 140 56 - - 360 450 0.9 21 - - - - - 1470
333939114382802 006S022E11R002S 33.6608564 -114.641903 276 21 21-Mar-67 24.4 2400 7.5 440 0 - 660 120 84 - - 200 580 0.9 39 - - - - - 1510
333939114405801 006S022E09Q001S 33.6608563 -114.683571 403 302 - - 1700 7.4 82 0 - 270 84 14 260 6 390 220 3.4 - 1600 40 0 - 1020
333939114411501 006S022E09P001S 33.66108687 -114.6883017 399.64 252 13-Jun-67 32.2 2920 7.5 34 0 - 430 150 9.4 - - 580 480 - 16 - - - - - 1670
333959114375901 006S022E12L002S 33.66673403 -114.633575 279.57 442 22-Jan-62 - 966 8.1 220 0 - 170 45 13 150 - 120 120 0.9 - - 120 - - - -
333959114375901 006S022E12L002S 33.66673403 -114.633575 279.57 442 22-May-64 - 980 8.1 230 0 - 170 50 11 140 - 120 110 0.8 - - 80 - - - -
334004114410201 006S022E09L001S 33.66780059 -114.6846822 402 332 - - 1520 7.4 100 0 - 220 76 7 240 2 290 230 2.2 - - 800 100 0 - 897
334004114411701 006S022E09M001S 33.66780058 -114.688849 404 292 - - 1800 7.6 100 0 - 230 84 5 280 14 370 250 2.1 - - 900 160 0 - 1060
334004114413301 006S022E08J001S 33.66780057 -114.6932936 408 302 - - 1700 7.5 82 0 - 270 84 14 250 12 360 250 2 - - 1100 60 0 - 1010
334005114382901 006S022E11H001S 33.6680062 -114.6421365 407.97 235 23-Oct-56 - 1600 7.8 330 0 - - 220 - 140 - 120 430 - - - 160 - - - -
334005114382901 006S022E11H001S 33.6680062 -114.6421365 407.97 235 26-Mar-63 - 1870 230 0 - - 170 - 250 - 310 300 - - - 390 - - - -
334005114382901 006S022E11H001S 33.6680062 -114.6421365 407.97 235 19-Jun-64 27.2 2060 7.2 220 0 - 430 110 39 - - 330 310 1 22 - 200 - - - 1180
334005114400501 006S022E08L001S 33.66807838 -114.6688484 408 300 09-Sep-66 - 2600 7.6 85 0 - 640 210 29 310 12 440 600 2.1 - - 2000 400 0 - 1650
334009114381401 006S022E12E001S 33.6691673 -114.6381058 410.54 230 16-Jun-58 - 1940 7.7 260 0 - 360 84 36 280 - 280 340 0.9 - - 400 - - - -
334009114381401 006S022E12E001S 33.6691673 -114.6381058 410.54 230 23-Sep-60 - 2060 8.2 240 0 - 390 94 37 300 - 310 380 0.9 - - 480 - - - -
334009114381401 006S022E12E001S 33.6691673 -114.6381058 410.54 230 22-Oct-60 - 2300 - 240 0 - - 170 - 330 - 370 - - - - 720 - - - 1370
334014114380301 006S022E12F001S 33.67055338 -114.6352502 409.64 252 29-Aug-52 - 2420 - 200 M - - - - 380 - 410 - - - - 830 - - - -
334014114380301 006S022E12F001S 33.67055338 -114.6352502 409.64 252 22-Oct-60 - 2300 - 240 0 - - 170 - 330 - 370 - - - - 720 - - - -
334014114380301 006S022E12F001S 33.67055338 -114.6352502 409.64 252 05-Jan-61 - - 8 260 0 - 400 100 35 310 4.8 320 400 0.8 - - - 0 - 1300
334016114394501 006S022E10H001S 33.67146164 -114.6631066 404.21 304 - - 1400 7.7 210 0 - 150 32 17 240 8 220 160 5 - - 700 140 - - 786
334031114390301 006S022E02P001S 33.6753421 -114.6513757 400.85 250 14-May-64 - 1150 8.2 180 0 - 76 21 6 210 4 180 120 - - - M - - - 640
334031114390301 006S022E02P001S 33.6753421 -114.6513757 400.85 250 01-Jul-64 - 1190 8.3 200 0 - - - 29 230 - 170 150 - - - 220 - - - -
334031114390301 006S022E02P001S 33.6753421 -114.6513757 400.85 250 10-Feb-66 - 1220 8.2 210 0 - 64 16 5.8 - - 180 150 1.7 15 - 340 - - - 711
334034114382501 006S022E01N001S 33.67613378 -114.6410699 405 426 09-Feb-66 - 1210 7.7 240 0 - 86 20 8.8 - - 160 150 1.2 16 - - - - -
334057114375901 006S022E01F001S 33.68260584 -114.6335253 406.54 350 10-Nov-66 - 1440 8 230 0 - 370 110 24 180 8 240 210 - - - 100 - - - 885
334120114400001 006S022E03B001S 33.68903339 -114.6676125 420 414 27-Oct-66 - - - - - - - - - - - - - - - - 1400 - - - -
334128114333301 005S023E34Q001S 33.6911335 -114.5599565 280 266 15-Feb-63 - 1330 8 300 0 - 480 140 30 - - 130 290 - 17 - 40 - - - 868
334147114403901 005S022E33J001S 33.69641096 -114.6782935 438 380 16-Mar-62 31.1 2090 7.2 58 0 - 330 130 2.1 - - 400 380 2.2 29 - - - - - -



Table J-2
WATER CHEMISTRY DATA

FOR PALO VERDE GROUNDWATER BASIN
 SOLAR MILLENIUM, LLC 

BLYTHE SOLAR POWER PROJECT 
RIVERSIDE COUNTY, CALIFORNIA

STATE WELL NUMBER 
(DWR)

STATE WELL NAME 
(USGS) LATITUDE LONGITUDE

Ground 
Surface 

Elevation

Well 
Depth

Sample Date 
Mo/Yr

Temperature, 
degrees Celsius

Specific 
conductance,  

microsiemens per 
cm at 25 degrees 

Celsius

pH, 
standard

units

Bicarbonate,  
mg/L

Carbonate,  
mg/L

Nitrate plus 
nitrite as 
nitrogen

mg/L

Hardness as 
calcium 

carbonate
mg/L

Calcium,  
mg/L

Magnesium, 
mg/L

Sodium,    
mg/L

Potassium, 
mg/L

Chloride, 
mg/L

Sulfate,    
mg/L

Fluoride, 
mg/L

Silica as 
SiO2
mg/L

Arsenic,  
ug/L

Boron, 
ug/L

Iron,
ug/L

Manganese, 
ug/L

Selenium, 
ug/L

Total 
Dissolved 

Solids 
(TDS)
mg/L

WELL DATA 1 WATER CHEMISTRY

334147114403901 005S022E33J001S 33.69641096 -114.6782935 438 380 16-Apr-62 - 2080 7.6 49 0 - 310 120 2.7 300 - 380 380 - - - 1280 - - - -
334147114403901 005S022E33J001S 33.69641096 -114.6782935 438 380 26-Oct-62 - 2200 7.4 50 0 - 340 120 7.4 - - 400 380 1.7 24 - - - - - -
334148114392701 005S022E35M001S 33.69668876 -114.6582929 425 400 27-Jan-64 30.6 1940 7.6 82 0 - 220 84 2.1 - - 340 340 1.9 19 - 1000 - - - -
334148114392701 005S022E35M001S 33.69668876 -114.6582929 425 400 10-Feb-66 30.6 2160 7.1 64 0 - 260 98 4.7 - - 410 400 1.6 20 - - - - - -
334148114392701 005S022E35M001S 33.69668876 -114.6582929 425 400 21-Jun-66 - 2030 85 M - 250 95 2.7 330 - 390 350 - - - 1060 - - - -
334215114383701 005S022E35A001S 33.70418859 -114.6444037 439.3 450 05-Nov-64 - 2060 8 120 0 - 180 66 3.9 370 6.6 390 330 - - - 1060 - - - 1230
334215114383701 005S022E35A001S 33.70418859 -114.6444037 439.3 450 10-Feb-66 30.6 2160 7.4 120 0 - 190 63 7.5 - - 900 350 1.6 18 - - - - - -
334301114411301 005S022E28C001S 33.71696595 -114.6877385 485 601 27-Jun-60 - 2980 7.3 21 0 - 640 240 8.9 420 - 400 950 - - - 1570 - - - -
334301114411301 005S022E28C001S 33.71696595 -114.6877385 485 601 17-Nov-60 - 3030 20 - - - 260 - 420 - 420 - 2.8 - - 1570 - - - -
334301114411301 005S022E28C001S 33.71696595 -114.6877385 485 601 08-Feb-62 32.2 3160 7.7 22 - - 680 260 12 - - 420 1000 - 11 - - - - - 2190
334301114411301 005S022E28C001S 33.71696595 -114.6877385 485 601 25-Oct-62 32.8 3090 7.7 38 0 - 700 270 8.9 - - 440 970 - 16 - - - - - 2160
334302114302801 005S024E30B001S 33.71724406 -114.5085663 289 130 18-Jun-64 22.2 1740 7.7 350 0 - 560 150 42 - - 130 420 0.5 19 - - - - - 1100
334302114411401 005S022E28C002S 33.7172437 -114.6880163 485 400 16-Mar-59 - 2940 7.8 21 0 - 710 270 8.1 410 - 390 1000 2.8 - - 1530 - - - -
334302114411401 005S022E28C002S 33.7172437 -114.6880163 485 400 27-Sep-63 - 3060 7.3 20 0 - 700 260 13 420 - 430 970 - - - 1600 - - - -
335217114531301 003S020E33Z001S 33.8714065 -114.8877464 1360 17 03-Nov-17 - - - 260 0 - 640 160 56 - - 380 260 - 47 - - 300 - - -

Notes

           mg/L                                 Milligram per Liter
           ug/L                                 Microgram per Liter
Survey Datum                          NAD 83
               -                                     Data not provided
               1                                     Data not provided in the USGS National Water Information System Database - http://:nwis/waterdata.usgs.gov/ and the Department of Water Resources Database - http://wdl.water.ca.gov/gw/ and DWR Bulletin 91-23 (October 1978). 
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USGS Drillers Logs of Wells 
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APPENDIX J 

NUMERICAL GROUNDWATER MODEL 
EVALUTION OF PROPOSED PROJECT PUMPING 

DURING CONSTRUCTION AND OPERATION 
BLYTHE SOLAR POWER PROJECT 

PALO VERDE MESA, RIVERSIDE COUNTY 

INTRODUCTION 

A regional model developed by the U.S. Geological Survey (USGS) incorporation with the U.S. 
Bureau of Reclamation (USBR) for evaluation of the potential for depletion of the Colorado River 
from pumping in sub-adjacent groundwater basins was selected for the Project (Leake and others 
2008).  The regional model is a two-dimensional superposition model developed using 
MODFLOW code (MacDonald and Harbaugh 2000) for the Parker-Palo Verde-Cibola area, which 
includes the Palo Verde Mesa Groundwater Basin and the Project site.   The model is a simple 
two-dimensional model, employing a simple vertical geometry and a large grid spacing to 
evaluate the impacts from groundwater pumping on recharge to the Colorado River.  Major 
features of the model include: 

• Two dimensional and uniform 0.25 mile grid spacing 

• Two statistically derived low and average transmissivity values (6,300 feet squared per 
day [(ft2/d)] and 26,000 ft2/d) for a conservative and an average value 

• A constant storage coefficient or specific yield (0.2) 

• A uniform saturated thickness of the aquifer (500 feet) 

An existing numerical groundwater model developed by the USGS was selected to evaluate the 
impacts from proposed Project pumping because: 

• The model included the BSPP site and was of sufficient detail and complexity to 
adequately evaluate impacts from the modest pumping proposed for the Project. 

• It had undergone review by the USGS and USBR.  As such, the model had undergone 
significant peer review prior to being published. 

The Project is a dry-cooled facility that will use about 600 acre-feet per year (afy) of groundwater 
from two onsite wells for all operational activities, including mirror washing (the largest use, 
accounting for more than one-third of the total).  The peak water usage during the summer 
months is about 818,000 gallons per day (gpd) or about 568 gallons per minute (gpm) under an 
assumption of continuous pumping.  The average water use of the 30-year life of the Project is 
about 400 gpm.  Winter usage will be less owing to the lower ambient temperature, and lesser 
requirements for process water and water for dust suppression.  During construction, the Project 
will use an average of approximately 560 afy over a 69-month period or an average of about 700 
gpm under an assumption of pumping 12-hour per day.   

The model was used as a preliminary tool to simulate cone of depression, and how the project 
pumping might impact adjacent water supply wells.   



MODEL SETUP and INPUT PARAMETERS 

The superposition model by Leake, et al (2008) adopts a uniform grid spacing of 0.25 miles or 
1,320 feet.  To better resolve the rapid change in drawdown near the pumping well, the model 
grid spacing was refined as follows (Figure J-1): 

• 30 feet from the pumping well for the first 300 feet 

• 100 feet further out from the well for one mile or 5,280 feet 

• The grid spacing gradually increases from 100 feet to 1,320 feet for the remainder of the 
model domain 

Following licensing of the project, construction activities are expected to take place over a period 
of approximately 69 months.  It is anticipated that water use during this period will be from onsite 
groundwater supplied from newly installed water supply well on the eastern portion of the Project 
site and additional wells as needed to provide an adequate water supply for construction and 
domestic purposes. Following construction, two water supply wells will be used to provide the 
operation water supply for the Project.  The pumping rate is assumed to be 135,000 cubic-feet 
per day (cfd)(700 gpm) during 5.67 years (69 months) of construction period and 77,000 cfd (400 
gpm) during 30 years operational period. 

The model was used to evaluate Project impacts from proposed pumping for construction and 
operational water supply over a range of Transmissivity and storage coefficients as follows:  

Transmissivity of: 

• 6,300 ft2/d 

• 26,000 ft2/d 

• 93,600 ft2/d 

Storage Coefficients of:  

• 0.05 

• 0.20 

The predictive results showing the drawdown at the pumping well and the distance to a 
drawdown of 5 feet and 1 foot are provided on Tables J-1 and J-2. 

MODEL RESULTS 

The drawdown contours showing the cone of depression for the range of transmissivity and 
storage coefficients are shown on Figures J-2 through J-7. As can be seen from Table J-1 and J-
2, the maximum drawdown occurs at the end of construction period.  As would be expected, the 
drawdown at the well and the radius of influence increase with lower transmissivity and decrease 
with higher transmissivity.  

The maximum drawdown and radius of influence at the pumping well during the operational 
period at a pumping rate of 400 gpm is about 20 and 8,350 feet, respectively.   The maximum 
drawdown and radius of influence at well at the Project site during the construction period at a 
pumping rate of 700 gpm is about 29 and 6,000 feet, respectively.    



The maximum drawdown is much smaller than the assumed model layer thickness, 500 feet. The 
modeling result of maximum drawdown is consistent with general understanding that 
superpostion model can be applied if the basin-wide drawdown of the unconfined aquifer is 10 
percent or less of saturated thickness (Reilly at al., 1987).  The model results show that no well 
within a one-mile radius of the project site will be impacted by a drawdown of 5 feet or more.  

Model Limitation 

The modeling results presented in this report are based on a simplified groundwater model with 
homogeneous transmissivity and specific yield, which are derived from previous USGS 
superposition model efforts.  Therefore the presented modeling result is considered preliminary. 
The actual cone of depression will vary subject to site specific aquifer properties, the 
heterogeneity of the aquifer and other model constraints at the site. 

At the time of this writing, a plan for site specific aquifer testing is underway.   After the testing is 
conducted, the site specific aquifer data, in combination with previously basin-wide hydrogeologic 
data will be evaluated.  The model may be refined considering heterogeneity of the aquifer 
properties if warranted and the model results will be better representation of impact from 
groundwater pumping.  

The electronic model files used in the simulations are attached.  Additionally, the original USGS 
model report from Leake and others, 2008 is attached for reference. 



ATTACHMENTS 
 
 
Leake and others, 2008 - Use of Superposition Models to Simulate Possible Depletion of 
Colorado River Water by Groundwater Withdrawal, USGS Scientific Investigation Report 2008-
5189 
 
Groundwater Model Files (CD) 
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Table J-1 Results of Numerical Groundwater Modeling Storage 
Coefficient of 0.20 
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Table J-2 Results of Numerical Groundwater Modeling Storage 
Coefficient of 0.05 
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Blythe Solar Power Project
Figure J1

Groundwater Superposition Model
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Blythe Solar Power Project

Figure J-2
Predicted Drawdown During

Construction Period
(Storage Coefficent of 0.20)
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Blythe Solar Power Project

Figure J-3
Predicted Drawdown During

Operation Period
(Storage Coefficent of 0.20)
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Blythe Solar Power Project

Figure J-4
Predicted Drawdown During

Construction Period
(Storage Coefficent of 0.05)
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Blythe Solar Power Project

Figure J-5
Predicted Drawdown During

Operation Period
(Storage Coefficent of 0.05)
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Volume
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Use of Superposition Models to Simulate Possible 
Depletion of Colorado River Water by Ground-Water 
Withdrawal

By Stanley A. Leake, William Greer1, Dennis Watt2, and Paul Weghorst3

Abstract 
According to the “Law of the River,” wells that draw 

water from the Colorado River by underground pumping need 
an entitlement for the diversion of water from the Colorado 
River. Consumptive use can occur through direct diversions 
of surface water, as well as through withdrawal of water from 
the river by underground pumping. To develop methods for 
evaluating the need for entitlements for Colorado River water, 
an assessment of possible depletion of water in the Colorado 
River by pumping wells is needed. Possible methods include 
simple analytical models and complex numerical ground-water 
flow models. For this study, an intermediate approach was 
taken that uses numerical superposition models with complex 
horizontal geometry, simple vertical geometry, and constant 
aquifer properties. The six areas modeled include larger extents 
of the previously defined river aquifer from the Lake Mead 
area to the Yuma area. For the modeled areas, a low estimate of 
transmissivity and an average estimate of transmissivity were 
derived from statistical analyses of transmissivity data. Aquifer 
storage coefficient, or specific yield, was selected on the basis 
of results of a previous study in the Yuma area. The USGS pro-
gram MODFLOW-2000 (Harbaugh and others, 2000) was used 
with uniform 0.25-mile grid spacing along rows and columns. 
Calculations of depletion of river water by wells were made 
for a time of 100 years since the onset of pumping. A computer 
program was set up to run the models repeatedly, each time 
with a well in a different location. Maps were constructed for at 
least two transmissivity values for each of the modeled areas. 
The modeling results, based on the selected transmissivities, 
indicate that low values of depletion in 100 years occur mainly 
in parts of side valleys that are more than a few tens of miles 
from the Colorado River. 

Background 
The Consolidated Decree of the United States Supreme 

Court in Arizona v. California, 547 U.S.150 (2006) recognizes 
that consumptive use of water from the Colorado River can 

1Bureau of Reclamation, Yuma, Arizona
2Bureau of Reclamation, Boulder City, Nevada
3Formerly of Bureau of Reclamation, Denver, Colorado

occur by underground pumping. According to the “Law of the 
River,” users within the lower Colorado River Basin States 
can divert tributary inflow before it reaches the Colorado 
River. Once the water reaches the Colorado River, however, 
entitlements are required for diversions. For wells pumping 
in the aquifer connected to the river, determination of a tribu-
tary source of ground water pumped can be difficult. Wilson 
and Owen-Joyce (1994), and Owen-Joyce and others (2000) 
presented the “Accounting-Surface Method.” The accounting 
surface is defined by ground-water levels that would occur if 
the Colorado River were the only source and sink for water in 
the connected aquifer. The theory is that static (non-pumping) 
ground-water levels in the aquifer that are higher than the 
accounting surface indicate the presence of tributary water. The 
accounting-surface method could be used by managers to deter-
mine the need for entitlements for river water for wells pump-
ing in the river aquifer. Wiele and others (2008) presented an 
updated accounting surface based on conditions in 2007–2008.

Wilson and Owen-Joyce (1994) and Owen-Joyce and 
others (2000) defined the “river aquifer” as the saturated 
ground-water system adjacent to the Colorado River, includ-
ing the flood plain sediments, older alluvial sediments, and 
sediments in connected adjacent valleys (fig. 1). The account-
ing surface was defined over the area of the river aquifer 
beyond the Colorado River flood plain. 

The accounting surface includes some parts of the river 
aquifer that are many tens of miles from the Colorado River. 
The States along the lower Colorado River have expressed 
interest in Federal water managers considering the timing 
over which wells at great distance would deplete water in the 
Colorado River. To further understand the temporal effects of 
pumping wells on the Colorado River, Reclamation subse-
quently set up the Non-Contract Use Modeling technical team 
to explore methods of assessing the timing over which wells 
would deplete water in the Colorado River. Team members 
include staff of the Bureau of Reclamation (Reclamation) and 
the U.S. Geological Survey (USGS). This report describes the 
method developed by the technical team and results for larger 
portions of the river aquifer along the lower Colorado River.
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Figure 1. Study area along the lower Colorado River.

Modeling technical team. Jeff Addiego, formerly of Reclama-
tion in Boulder City, Nevada, helped with aspects relating 
to the water-accounting procedures. Carroll Brown, of the 
Reclamation in Yuma, Arizona, contributed advice on aspects 
of geology. Sandra Owen-Joyce, of the USGS in Tucson, 
Arizona, helped with previous work on the accounting-surface 
method, including the river aquifer. Steve Belew, Reclamation 
in Boulder City, and Jim Monical, USGS in Tucson, helped 
with spatial data sets needed to construct models and mapping 
of model results.

Approach
C.V. Theis (1940) provided the first comprehensive 

description of the sources of water to pumped wells. He 
indicated that pumped water initially comes from storage 
in the aquifer. With time, however, cones of depression can 
spread to areas of ground-water recharge and discharge, result-
ing in additional sources of increased inflow to the aquifer 
and decreased outflow from the aquifer. Along the Colorado 
River, the interest is in depletion of surface-water resources 
from ground-water pumping. The depletion can result from 
decreased flow from the aquifer to the river, increased flow 
from the river to the aquifer, or a combination of these two 
conditions. 

An example of the progression of depletion over time 
for a point in a hypothetical aquifer is shown in figure 2. At 
time zero, when pumping starts, the source of all of the water 
pumped by the well is from ground-water storage. With time, 
however, this source decreases and the complementary source, 
depletion of surface water, increases. At the end of 50 years in 
this example, only 5 percent (a fraction of 0.05) of the pump-
ing rate is from ground-water storage, and 95 percent is from 
depletion of surface water. If the well pumping was continued 
indefinitely, a new steady-state condition would be reached 
in which all of the well pumping rate would be depletion of 
surface water, assuming that water available in surface-water 
bodies is sufficient to supply the total rate of well pumping. 

The time over which depletion of river water by under-
ground pumping occurs is dependent on the river and aquifer 
geometry, location of the pumping, and the aquifer hydraulic 
diffusivity, T/S, where T is transmissivity and S is storage coef-
ficient. It is important to note that depletion of surface water 
by pumping ground water is independent of the rates and 
directions of ground-water flow. For example, depletion can 
occur from decreased flow from the aquifer to the river and 
increased flow from the river to the aquifer. For both of these 
cases, the amount of water in the river is reduced and the total 
depletion of the flow in the river is the sum of the two quanti-
ties. If the flow system changed by means such as changing 
recharge amounts or locations and (or) changing river stages, 
the total depletion by a well would be the same as depletion by 
a well at the same location in the unchanged system as long as 
the changes to the system did not affect the aquifer diffusivity 
and the location of the surface-water features.
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Figure 2. Sources of water to a well through time in a river-aquifer system, expressed as a fraction of the pumping rate.

of the decrease in ground-water flow to the river and increase in 
ground-water flow from the river. 

Calibrated ground-water flow models do not exist for 
most parts of the lower Colorado River aquifer, and construc-
tion of such models was beyond the scope of this study. For 
this study, an approach was taken that is intermediate to the 
approaches using analytical solutions and calibrated numerical 
models. The intermediate approach uses numerical models that 
incorporate the complex horizontal geometry of the aquifer 
and river, but incorporate the simplifying principle of super-
position, and the simple vertical geometry and homogeneity 
assumptions that are part of the analytical-solution approach.

Numerical superposition models for evaluating possible 
depletion of water in the Colorado River by ground-water 
pumping in the connected river aquifer were constructed for 
select areas along the lower Colorado River from Lake Mead 
to the Yuma area. The areas modeled include the river aquifer 
as defined by Wilson and Owen-Joyce (1994) and Owen-Joyce 
and others (2000). In a few of the modeled areas, the model 
boundaries extend beyond the defined river aquifer boundary 
where the defined boundary does not represent a physical no-
flow boundary. Some general aspects of the modeling strategy 
are as follows:

Depletion is calculated using numerical superposition or 1. 
change models. In plan view the aquifers are complexly 
shaped, based on the outline of the mapped river aquifer, 
with any mapped no-flow areas removed from the active 
model domain. In cross-sectional view the aquifers are 
simple two-dimensional horizontal slabs.

If the interest is in total depletion, mathematical solution 
can be done using the principle of superposition in an analyti-
cal or numerical method that solves for changes in a system 
that is initially static. In a solution using the superposition 
approach, total depletion from a surface-water boundary from 
ground-water pumping is directly computed, and individual 
components of decreased flow from the aquifer to the river 
and increased flow from the river to the aquifer cannot be 
computed. The simplest approach to calculating depletion 
from ground-water pumping is the analytical solution by 
Glover and Balmer (1954). This approach assumes the river is 
a line source—straight and infinitely long, and fully penetrates 
the thickness of the aquifer, which extends an infinite distance 
away from the river. Using the theory of image wells, deple-
tion in a bounded aquifer can be computed by the analytical 
solution, with a lateral no-flow boundary that is parallel to 
the river. Aquifer properties are assumed to be homogeneous. 
Because of the complex geometry of the Colorado River and 
the river aquifer (fig. 1), the analytical solution by Glover and 
Balmer (1954) is difficult to apply, especially in and around 
side valleys that are a part of the river aquifer.

A more common approach to calculating depletion is to use 
calibrated numerical ground-water flow models. Such models 
approximate the vertical and horizontal geometry of the aquifer, 
as well as flow patterns within the aquifer. The approach gener-
ally includes first running the model without a pumping well of 
interest and saving model-computed rates of ground-water flow 
to and from the river. The next step involves running the model 
again, this time with the pumping center added, again saving 
model-computed rates of ground-water flow to and from the 
river. For the two model runs, depletion is calculated as the sum 
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Models are constructed for the largest of the river-aquifer 2. 
areas from Lake Mead to the Yuma area along the lower 
Colorado River. Smaller areas of the river aquifer are not 
modeled where experience with larger models indicates 
that computed depletion of surface water after 100 years of 
withdrawal for narrow sections is relatively high.

The models do not represent spatial variations of aquifer 3. 
hydraulic properties. The models use a constant storage 
coefficient (specific yield), and two or more statistically 
derived transmissivity values. The transmissivity values are 
selected to simulate aquifer hydraulic diffusivity that repre-
sents (a) a conservative (or low) value that would underesti-
mate depletion, and (b) an average value.

The only surface-water boundaries included in the models 4. 
are the Colorado River, reservoirs along the river, and wet-
lands connected to the river.

Depletion is mapped for 100 years of withdrawal for the 5. 
area of the river aquifer outside of the flood plain. The 
period of 100 years is commonly used as a timeframe in 
water management rules, such as Assured Water Supply cri-
teria of the State of Arizona (http://www.azwater.gov/dwr/
WaterManagement/Content/OAAWS/default.asp, accessed 
October 10, 2008).

 
Further details on implementation of the method are given in 
the following sections.

Areas Simulated

Models were constructed for six areas of the river aqui-
fer. Starting with the most upstream reach, models included 
(1) Detrital-Virgin, (2) Lake Mohave, (3) Mohave Valley,  
(4) Parker-Palo Verde-Cibola, (5) Laguna Dam, and (6) Yuma 
area (fig. 1). The two largest river-aquifer areas not modeled 
are the Grapevine Mesa-Cottonwood Wash area and the Lake 
Havasu Area.

Aquifer Properties

Aquifer hydraulic diffusivity is the aquifer property that 
controls the rate that the depletion curve (fig. 2) progresses 
from zero at the start of pumping, towards 1.0 as pumping 
time continues. Diffusivity is T/S, where T is transmissiv-
ity and S is the storage coefficient. A lower transmissivity 
will result in slower propagation of drawdown and slower 
progression of depletion from zero to 1.0 through pumping 
time and a higher transmissivity will result in faster propaga-
tion of drawdown and progression of depletion through time. 
Conversely, a lower storage coefficient will result in faster 
progression of depletion and a higher storage coefficient will 
result in slower progression of depletion. The distribution 
of diffusivity, or the distributions of both transmissivity and 
storage coefficient over the entire river aquifer is not known, 

so the approach taken here calculates depletion using (a) a 
uniform low (or conservative from the standpoint of effects of 
a pumping well on the river) estimate of diffusivity and (b) a 
uniform average estimate of diffusivity. For this study, low and 
average diffusivities were computed using an estimate of the 
average storage coefficient and estimates of the low and aver-
age transmissivity. Methods and rationales for selecting these 
values are given in the following two sections.

Transmissivity

Although detailed distributions of transmissivities for the 
river aquifer are not known, many estimates of transmissivity 
for sediments in the river aquifer were published by Metzger 
and Loeltz (1973, table 2), Metzger and others, (1973, 
table 5), and Olmstead and others, (1973, table 7). The best of 
these estimates were used to develop log-normal distributions 
of transmissivity for several subreaches of the river aquifer. 
From those log-normal distributions, low and average trans-
missivity values were selected.

The best values of transmissivity were selected from 
Metzger and Loeltz (1973, table 2), Metzger and others, 
(1973, table 5), and Olmstead and others, (1973, table 7) 
using the following two criteria:

Only transmissivity values from tests in the younger and 1. 
older alluvium of the lower Colorado River are used.

Test results are listed in the source reports as being fair, 2. 
good, or excellent, in terms of conformance to theoretical 
values and reliability of the estimate. 

Published values were available for Mohave Valley, Parker-
Palo Verde-Cibola, and Yuma areas. The first two of these 
areas are above Laguna Dam, and the Yuma area is below 
Laguna Dam. Published values of transmissivity that meet the 
criteria are generally higher in the Yuma area than in the areas 
above Laguna Dam. For this reason, separate log-normal 
distributions of transmissivity were developed for reaches 
above and below Laguna Dam. Transmissivity values used 
are given in tables 1 and 2. In some cases, the source docu-
ments listed multiple estimates for an individual well. Where 
these estimates met the criteria for inclusion in the analysis, 
multiple values for the same well were included.

The statistical analyses used 25 estimates of transmis-
sivity upstream of Laguna Dam (table 1) and 58 estimates 
downstream of Laguna Dam (table 2). Best-fit log-normal 
distributions to these data are shown in figures 3A and 3B. 
The low estimate of transmissivity was selected as the value 
for which probability is 0.05 (5 percent) that transmissivity 
is less than or equal to the value. The average estimate of 
transmissivity was selected as the value for which probability 
is 0.5 (50 percent) that transmissivity is less than or equal to 
the value. The low and average estimates of transmissivity for 
areas upstream of Laguna Dam are 6,300 ft2/day (47,000 gal/
day/ft), and 26,200 ft2/day (196,000 gal/day/ft), respectively 
(fig. 3A). The low and average estimates of transmissivity for 

http://www.azwater.gov/dwr/WaterManagement/Content/OAAWS/default.asp
http://www.azwater.gov/dwr/WaterManagement/Content/OAAWS/default.asp
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Table 1. Transmissivity values above Laguna Dam used for statistical analysis. 
[Type of test: D, drawdown; R, recovery; S, specific capacity; numbers in square brackets are range interval tested, in depth below land surface, in feet]

Well Name Other Identifier
Transmissivity, in gallons 

per day per foot
Transmissivity, in feet 

squared per day
Method of analysis

Mohave Valley (Metzger and Loeltz, 1973, table 2)

(B-18-22)15aab D. Hulet 240,000 32,100 R
(B-18-22)27bbc G. McKellip 600,000 80,200 D
(B-18-22)27bbc G. McKellip 900,000 120,300 R
(B-18-22)27bbc G. McKellip 240,000 32,100 S
9N/23E-29F1 City of Needles 600,000 80,200 R
9N/23E-29F1 City of Needles 300,000 40,100 S
9N/23E-32K1 City of Needles 450,000 60,200 R
9N/23E-32K1 City of Needles 70,000 9,400 S
11N/21E-36G2 Soto Brothers 94,000 12,600 R
11N/21E-36G2 Soto Brothers 75,000 10,000 S
11N/21E-36Q1 W. Riddle 160,000 21,400 D
11N/21E-36Q1 W. Riddle 170,000 22,700 R
11N/21E-36Q1 W. Riddle 140,000 18,700 S

Parker Valley (Metzger and others, 1973, table 5)

(B-7-21)14dcd USBIA No.8 460,000 61,500 R
(B-9-20)11dbc USBIA No.2 400,000 53,500 R
(B-9-19)5ddd USGS LCRP-15 300,000 40,100 R [175-199]
(B-7-21)14acd USBIA No.7 75,000 10,000 R
(B-7-21)23acd USBIA No.9 120,000 16,000 D,R
(B-7-21)23dcd USBIA No.10 40,000 5,300 D,R

Palo Verde Valley (Metzger and others, 1973, table 5)

5S/22E-28C2 U.S. Citrus Corp 64,000 8,600 R
6S/22E-11H1 H. M. Neighbor 700,000 93,600 R
6S/22E-15Q1 E. Weeks 290,000 38,800 R
6S/22E-35R2 Southern Counties 

Gas Co
150,000 20,100 R

8S/21E-13A1 USGS LCRP-16 63,000 8,400 D
8S/21E-13A1 USGS LCRP-16 170,000 22,700 R

areas downstream of Laguna Dam are 15,500 ft2/day (116,000 
gal/day/ft) and 45,900 ft2/day (343,000 gal/day/ft), respec-
tively (fig. 3B).

Storage coefficient
In aquifers such as the river aquifer along the lower 

Colorado River, the storage coefficient accounts for processes 
including (a) draining and filling of pore spaces at the water 
table, (b) contraction and expansion of the aquifer skeleton, 
and (c) decompression and compression of water in the pore 
spaces. The property that accounts for the first of these pro-
cesses is designated as the aquifer specific yield. The property 

that accounts for the remaining two of these processes is the 
elastic aquifer storage coefficient. In the river aquifer along 
the lower Colorado River, the specific yield accounts for the 
dominant mechanism of storage change. Specific yield in the 
river aquifer is several orders of magnitude larger than the 
elastic storage coefficient, and therefore is used to define low 
and average diffusivity. The best estimate of specific yield 
in the area is from Loeltz and Leake (1983). They published 
estimates of specific yield from neutron-probe studies along 
both sides of the Colorado River at 18 cross sections, spaced at 
approximate 1-mile intervals. The average specific-yield value 
from these studies was about 0.2, and this value is used in this 
study of depletion along the lower Colorado River.
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Table 2. Transmissivity values below Laguna Dam used for statistical analysis; all transmissivity values are from Olmstead and others 
(1973, table 7). 
[Type of test: D, drawdown; R, recovery; LA, leaky artesian analysis with observation wells; numbers in square brackets are interval tested, in depth below land 
surface, in feet]

Well Name Other Identifier
Transmissivity, in gal-
lons per day per foot

Transmissivity, in feet 
squared per day

Type of test

16S/22E-29Gca2 USGS LCRP-26 570,000 76,200 R
16S/23E-8Ecc USBR CH5 340,000 45,500 D
16S/23E-8Ecc USBR CH5 750,000 100,300 R
16S/23E-22Fdc H. Mitchell 440,000 58,800 R
16S/23E-9Naa M. E. Spencer 300,000 40,100 R
16S/23E-8Ecc USGS LCRP-23 240,000 32,100 R
16S/23E-10Rcc Dover and Webb 420,000 56,100 R
(C-7-22)14bcd USGS LCRP-14 110,000 14,700 R
(C-8-21)19dad F. J. Hartman 230,000 30,700 R
(C-8-21)30cdc F. J. Hartman 1,800,000 240,600 R
(C-8-22)13bdd2 S. Sturges 65,000 8,700 R
(C-8-22)18cbd Powers 610,000 81,600 R
(C-8-22)18ddd Powers 800,000 107,000 R
(C-8-22)19ccc USBR CH702 68,000 9,100 R
(C-8-22)21ddd B. Church 390,000 52,100 R
(C-8-22)22caa B. Church 430,000 57,500 R
(C-8-22)22cda1 B. Church 320,000 42,800 R
(C-8-22)22cda2 B. Church 380,000 50,800 R
(C-8-22)25bad F. J. Hartman 400,000 53,500 R
(C-8-22)26adb S & W 290,000 38,800 R
(C-8-22)28aaa B. Church 350,000 46,800 R
(C-8-22)30cab C. Lord 380,000 50,800 R
(C-8-22)30ddd C. Lord 360,000 48,100 R
(C-8-22)34aaa W. R. Whitman 960,000 128,300 R
(C-9-23)20cdd YCWUA 5 250,000 33,400 D
(C-9-23)29adb Yuma Mesa Fruit Growers 600,000 80,200 D
(C-9-23)30cba2 YCWUA 6 200,000 26,700 D
(C-9-24)13cdd USBR CH3 300,000 40,100 D
(C-9-24)13cdd USBR CH3 300,000 40,100 R
(C-9-24)36aaa McDaniel & Sons, Inc. 160,000 21,400 R
(C-10-23)12aba1 J. F. Nutt 210,000 28,100 D
(C-10-23)12aba1 J. F. Nutt 260,000 34,800 R
(C-10-23)12bda J. F. Nutt 500,000 66,800 R
(C-10-23)15aab J. F. Nutt 270,000 36,100 R
(C-10-23)31bbb1 USGS LCRP-1 280,000 37,400 LA
(C-10-24)12bcc2 YCWUA 8 260,000 34,800 R
(C-10-24)13bbd1 YCWUA 9 540,000 72,200 R
(C-10-25)1bba P. R. Sibley 443,000 59,200 R
(C-10-24)2cda F. Jeffries 460,000 61,500 R
(C-10-24)35cab J. F. Barkley 600,000 80,200 R
(C-11-23)34bbc USGS LCRP-30 1,300,000 173,800 R
(C-11-24)2abd J. F. Nutt 1,100,000 147,100 D and R
(C-11-24)23bcb USGS LCRP 10 740,000 98,900 R
(C-11-25)3dac E. Hughes 730,000 97,600 R
(C-9-23)17abc1 YCWUA 3 230,000 30,700 D
(C-8-22)34add USBR CH750 150,000 20,100 R
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Characteristics of Models

All models were constructed and implemented in the 
same way, with the major differences being the geometry of the 
domain and surface-water features simulated and the transmis-
sivity values tested. Simulations were carried out with the USGS 
model program MODFLOW-2000 (Harbaugh and others, 2000). 
Common characteristics of the models are as follows:

Each model domain represents a major contiguous area of 1. 
saturated alluvium and adjacent saturated older alluvium 
along the lower Colorado River. The lateral boundaries of 
the active model domain were determined by the outermost 
position of (a) the “river aquifer” as mapped by Wilson and 
Owen-Joyce (1994) or (b) the Colorado River alluvium 
upstream and downstream boundaries of each model where 
no adjacent river aquifer was mapped. The areas modeled 
are shown in figure 1. Coordinates for perimeters of the 
active model domains were prepared in the coordinate 
system defined by Universal Transverse Mercator Zone 
11, 1927 North American Datum. In some areas, the model 
perimeters were smoothed to remove unnecessary details in 
the river aquifer boundaries.

Units of length in the models are feet. As discussed in fol-2. 
lowing sections, however, some computations used coordi-
nates in meters to construct model data sets. Units of time in 
the models are days.

Model grids were oriented with rows in an east-west direction 
and columns in a north-south direction. The origin of each 
model is the northwest corner of the domain, so that model 
rows increment in a southerly direction and model columns 
increment in an easterly direction (fig. 4). The lateral grid 
spacing was 0.25 mile (402.3 m) along rows and columns. 

The number of rows in each model, rowN , was computed as 

         

max min( ) 0.49999row
Y YN INT − = + ∆  , 

where 
 
INT  is a function that converts a real number to an integer      
by truncating digits to the right of the decimal place, 
 

maxY is the maximum of all UTM easting coordinates (in 
meters) along the model perimeter, 
 

minY is the minimum of all UTM easting coordinates (in 
meters) along the model perimeter, and 
 
∆ is the grid spacing (402.3 m). 
 
Similarly, the number of columns in each model, colN , was 
computed as 
 
 
                         , 
where 
 

maxX is the maximum of all UTM northing coordinates (in 
meters) along the model perimeter, 
 

minX is the minimum of all UTM northing coordinates (in 
meters) along the model perimeter. 
 
The active part of the model grid was determined in a two-
step process using the model perimeter polygon and poly-
gons denoting areas of no flow within the model perimeter 
(fig. 4). Areas of no flow can occur where low permeability 
rocks are surrounded by the river aquifer. For the first step, 

Well Name Other Identifier
Transmissivity, in gal-
lons per day per foot

Transmissivity, in feet 
squared per day

Type of test

(C-8-22)35caa1 USBR CH704 340,000 45,500 R [435-570]
(C-8-22)35caa1 USBR CH704 1,100,000 147,100 R [99-170]
(C-8-22)35caa2 USBR CH751 190,000 25,400 R
(C-8-22)35cca Az. Western College 230,000 30,700 R
(C-8-22)35cad USBR CH752 200,000 26,700 R
(C-8-23)25acb Gunther and Shirley 260,000 34,800 R
(C-8-23)25dab Gunther and Shirley 300,000 40,100 R
(C-8-23)26bac G. Ogram 180,000 24,100 R
(C-8-23)27ada USBR CH701 330,000 44,100 D
(C-8-23)27ada USBR CH701 230,000 30,700 R
(C-8-23)27ddd1 Carter 120,000 16,000 R
(C-8-24)22ccd McLaren Produce Co. 300,000 40,100 D

Table 2. Transmissivity values below Laguna Dam used for statistical analysis; all transmissivity values are from Olmstead and others 
(1973, table 7)—Continued. 
[Type of test: D, drawdown; R, recovery; LA, leaky artesian analysis with observation wells; numbers in square brackets are interval tested, in depth below land 
surface, in feet]
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Figure 3. Cumulative distribution functions for best-fit log-normal distributions of transmissivity along the Lower Colorado 
River. A, Distribution function for data north of the Yuma area. B, Distribution function for data in the Yuma area.
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Figure 4. Model grid and features of the Lake Mohave ground-water superposition model.
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Table 3. Characteristics of superposition models constructed for parts of the flood plain and river aquifer adjacent to the lower Colorado River. 
[Transmissivity values run: Yes, depletion analysis was completed for value; No, depletion analysis was not completed for value.]

Model name

UTM Easting 
of west 

edge of grid, 
meters1

UTM North-
ing of north 

edge of grid, 
meters1

Number 
of model 

rows

Number of 
model 

columns

Number 
of active 

model 
cells

Transmissivity values run, feet squared per day 
(gallons per day per foot)

980
(7,300)

6,300
(47,000)

15,500
(116,000)

26,200
(196,000)

45,900
(343,000)

Detrital-Virgin 719593.75 4116963.00 396 148 21,025 Yes Yes No Yes No
Lake Mohave 702348.12 3958695.50 146 64 4,103 No Yes No Yes No
Mohave Valley 706260.69 3897829.00 160 139 8,976 No Yes No Yes No
Parker-Palo 

Verde-Cibola 636450.00 3789000.00 296 388 40,292 No Yes No Yes No

Laguna Dam 730897.38 3672455.25 103 145 6,302 No Yes No Yes No
Yuma 640414.62 3691950.25 374 340 59,6452 No Yes Yes Yes Yes

1Coordinates are UTM Zone 11, North American Datum of 1927. 
2For the model in the Yuma area, depletion was not calculated for active model cells in Mexico and areas in USA west of the area of the accounting surface 

published by Owen-Joyce and others (2000). A total of 16,147 simulations were made for each of four transmissivity values.

all cells that were more than 50 percent within the model 
perimeter were denoted as active, and all cells that were 50 
percent or less within the model perimeter were denoted as 
inactive. Second, all cells that were more than 50 percent 
within any area of no flow were denoted as inactive.

Each model consists of one layer of cells with a bottom 3. 
elevation of –500 ft and an initial head elevation of 0 ft for 
each active cell (fig. 5). This results in a uniform starting 
saturated thickness of 500 ft. The top elevation of the model 
was set at a uniform elevation of 10 ft.

Connected surface-water features were simulated using the 4. 
River Package of MODFLOW-2000. For all models, river 
stages were set to an elevation of zero, thereby allowing 
computation of change in flow to or from surface-water 
features that result from change in head in connected cells. 
In the River Package, the degree of connection between 
the surface water and a connected cell is controlled by the 
riverbed conductance term, rivC , which is defined as 
 
                      /riv rb rbC K A b= , 
where 
 

rbK  is the vertical hydraulic conductivity of the riverbed, 
  
A  is the area of the river in the cell, and 

  
rbb  is the thickness of the riverbed. 

 
Large riverbed conductance values were specified so that 
simulated surface-water features are hydraulically well con-
nected to underlying model cells. This approach approxi-
mates a specified-head boundary at the location of surface-
water feature. For the Parker-Palo Verde-Cibola model the 
River Package data set was constructed using the program 
RIVGRID (Leake and Claar, 1999), using an approxi-

mate river centerline, an assumed river width of 100 ft, an 
assumed rbK of 50 ft/day, and an assumed rbb  of 5 ft. The 
area, A , used to compute the riverbed conductance, rivC  
is computed by program RIVGRID as the product of the 
length of the river traversed in a cell by the centerline and 
the assumed river width. The average value of rivC  for the 
Parker-Palo Verde-Cibola model was 2.3×105 ft2/day. For 
all other models A  was computed as the area of intersec-
tion of a polygon representing the Colorado River and (or) 
reservoirs (fig. 4) and the model cell. The quantity  was set 
at 0.929 day-1, therefore the maximum conductance (for the 
case of a cell entirely within the river/reservoir polygon) is 
about 1.62×106 ft2/day. The average riverbed conductance 
for the Mohave Valley model is 7.3×105 ft2/day. For the 
Lake Mohave model (fig. 4) the average riverbed conduc-
tance was 1.3×106 ft2/day reflecting a wider surface-water 
body than is present in the Mohave Valley model.

The sensitivity of model results to the value of riverbed 
conductance was tested using the Lake Mohave model. Deple-
tion curves were computed by the model for withdrawal at two 
locations. For the first point, labeled “A” on figure 4, deple-
tion can occur when effects of withdrawal propagate about 4.5 
miles northeastward to the edge of Lake Mohave. For the sec-
ond point, labeled “B” on figure 4, depletion can occur when 
effects of withdrawal propagate about 14 miles along a side 
valley and then southwestward to the edge of Lake Mohave. 
Because of the shorter distance to surface water, depletion 
occurs more rapidly from withdrawals at point A than at point 
B. For each location, depletion curves were computed using 
a multiplication factor, F, of 1×10-1, 1×10-2, and 1×10-3, for 
all riverbed conductance values (fig. 6). Curves shown for 
F=1×100 use the original riverbed conductance values. As can 
be seen on figure 6, differences in depletion calculated with 
the original riverbed conductance values and with values that 
are three orders of magnitude lower are relatively minor, with 
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the greatest differences occurring at location A. This observa-
tion along with the fact that thick, low-permeability riverbed 
sediments are not known to occur along the lower Colorado 
River leads to the conclusion that the strategy of using rela-
tively high riverbed conductance values is reasonable.

A summary of characteristics of the six superposition 
models is given in table 3. The Laguna and Yuma models 
included parts of the model domain that extend beyond the 
mapped area of the river aquifer (fig. 1). The Laguna model 
was extended to the east because of uncertainty in where the 
river aquifer ends. An extension of the model domain such as 
this tends to slow down the progression of simulated depletion 
through time in comparison to that simulated in a model that 
includes a no-flow boundary. The Yuma model was extended 
southward and westward into the delta region of the Colorado 
River to reflect the continuous nature of the ground-water flow 
system thought to exist there.

Estimates of depletion in all models were made using the 
low and average transmissivity values from data upstream of 
Laguna Dam, 6,300 ft2/day (47,000 gal/day/ft) and 26,200 ft2/
day (196,000 gal/day/ft), respectively. In addition, for the Yuma 
area, estimates of transmissivity were made using low and 
average transmissivity values derived from data downstream 
from Laguna Dam. Finally, for the Detrital-Virgin model, 
depletion also was calculated using a lower estimate of trans-
missivity, 980 ft2/day (7,300 gal/day/ft). This was done because 
there were no published estimates of transmissivity in this area 
in the sources of data used in the statistical analyses. Transmis-
sivity from one location in the Virgin Valley was inferred to 
be about 980 ft2/day (7,300 gal/day/ft) from hydraulic conduc-
tivity and thickness estimates in a report by Las Vegas Water 
District (1992). 

Procedure for Computing and Displaying Areal 
Representation of Depletion

A computer program was written to run each superposi-
tion model repeatedly to calculate depletion at 100 years for 
every active model grid cell. The program required that most 
MODFLOW data sets for the model be constructed prior to 
running the program. Steps taken by the program to calculate 
depletion for each active cell in the model grid are as follows:

Calculate the northing and easting of the cell center in Uni-1. 
versal Transverse Mercator Zone 11 coordinates.

Construct a MODFLOW-2000 Well Package data set for a 2. 
single well at the row and column location of the cell using 
the flow rate of –1.431×105 ft3/day (a withdrawal of 1,200 
acre-ft/year). The final results are independent of this rate 
because the system responds linearly to withdrawal (Leake 
and Reeves, 2008). The superposition model only considers 
the effects of the well being added, not effects of other wells 
that may exist in the real system.

Run the model.3. 

Open the listing file from the model run and read the 4. 
induced flow from the river in the volumetric mass balance 
for a simulation time of 100 years.

Divide the induced flow rate by the withdrawal rate to 5. 
get the fraction of withdrawal rate that is accounted for as 
depletion at 100 years.

Save information including row and column location, north-6. 
ing and easting, and depletion fraction at 100 years. 

When these steps are completed for each active cell in 
the model grid, the program is terminated. The northing and 
easting coordinates and depletion values then can be mapped 
using a geographic information system or other contouring 
program. The grid spacing of 0.25 mile results in a dense net-
work of points for mapping over the area of the river aquifer.

Note that the method as implemented requires one 
simulation (model run) for each cell in the model grid for 
each transmissivity value used. For example, the Parker-Palo 
Verde model has 40,292 active model cells, requiring a total 
of 80,584 simulations for two uniform values of transmissiv-
ity. For the Yuma model, the active area is much larger than 
the area over which Owen-Joyce and others (2000) mapped 
the accounting surface. The mapped depletion, however, was 
restricted to a subarea of the model domain, requiring a total 
of 64,588 simulations for four uniform transmissivity values.

Results
Distributions of simulated depletion in the six model 

areas are shown on maps in figures 7–17. The maps show the 
simulated depletion at 100 years for one pumping well, as a 
function of the position of that well. Values shown are deple-
tion as a percentage of the well pumping rate, expressed as 
colored areas in ten intervals ranging from 0–10 to 90–100. 
Supplemental contours showing 1 percent and 5 percent deple-
tion are shown where values in this range were computed. 
Depletion percentages are not shown for areas within the 
flood plain of the Colorado River or areas underlying surface 
water. In the following discussions of results for the six areas 
modeled, particular focus is on any areas where depletion is 5 
percent or less in 100 years. 

Detrital-Virgin Area

This area includes Detrital Valley south of Lake Mead and 
the much larger Virgin Valley north of Lake Mead. With the 
lowest transmissivity value tested, 980 ft2/day (7,300 gal/d/ft), 
the 5 percent depletion contour is within 5–10 miles of Lake 
Mead (fig. 7). Results for the two higher transmissivity values 
shown in figures 8 and 9, increased depletion can be seen by 
the increasing distance of the 5 percent contour from Lake 
Mead. For the highest value tested, 26,200 ft2/day (196,000 
gal/d/ft), depletion is greater than 5 percent in all of Detrital 
Valley and in all but the uppermost part of Virgin Valley.
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Lake Mohave Area

This area was the smallest among the six areas modeled. 
For the two transmissivity values tested, 6,300 and 26,200 ft2/
day (47,000 and 196,000 gal/d/ft), no areas of depletion less 
than 10 percent were simulated (fig. 10). The lowest values of 
depletion are in a narrow north-south trending side valley on 
the east side of the river.

Mohave Valley Area

In this area, depletion simulated using the higher trans-
missivity value tested, 26,200 ft2/day (196,000 gal/d/ft), is 
higher than 50 percent over the entire model domain (fig. 11). 
Using the lower value tested, 6,300 ft2/day (47,000 gal/d/ft), a 
small area of depletion less than 5 percent was simulated in a 
side valley in the southeast part of the model domain.

Parker-Palo Verde-Cibola Area

This area is the largest river-aquifer area modeled and is 
the most complex in terms of horizontal geometry. Side val-
leys in the river aquifer include Chuckwalla and Smoketree 
Valleys in the west-central and southwest part of the area, and 
Cactus and La Posa Plains in the northeast part of the area. 
Using the lower transmissivity value tested, 6,300 ft2/day 
(47,000 gal/d/ft), 5 and 1 percent simulated depletion contours 
can be seen in each of these side valleys (fig. 12). With the 
higher transmissivity value tested, 26,200 ft2/day (196,000 
gal/d/ft), only Chuckwalla Valley has simulated depletion 
values less than 10 percent (fig. 13).

Laguna Dam Area

This area includes the part of the river aquifer that is 
immediately above Laguna Dam. Much of this part of the 
river aquifer is east of the river. Using the lower transmissivity 
value tested, 6,300 ft2/day (47,000 gal/d/ft), 5 and 1 percent 
simulated depletion contours can be seen around Castle Dome 
Plain (fig. 14). With the higher transmissivity value tested, 
26,200 ft2/day (196,000 gal/d/ft), simulated depletion is 
greater than 10 percent for the entire area (fig. 15).

Yuma Area

For the Yuma area, depletion was simulated for the area 
of the accounting surface mapped by Owen-Joyce and oth-
ers (2000). For the two transmissivity values used in models 
upstream from Laguna Dam, 6,300 and 26,200 ft2/day (47,000 
and 196,000 gal/d/ft), areas of depletion of 5 percent or less 
were simulated with the lower of these values (fig. 14), but no 
areas of depletion of 10 percent or less were simulated with 
the higher value (fig. 15). Depletion also was simulated using 
two additional transmissivity values, 15,500 and 45,900 ft2/day 

(116,000 and 343,000 gal/d/ft). For the lower transmissivity, 
a small area of depletion less than 10 percent was simulated on 
the west side of the mapped area in southeastern Imperial Valley 
(fig. 16). For the higher transmissivity, simulated depletion is 
greater than 20 percent throughout the model domain (fig. 17).

Summary and Conclusions
The Accounting-Surface Method was developed (Wilson 

and Owen-Joyce, 1994; Owen-Joyce and others, 2000; Wiele 
and others, 2008) to provide water managers with a possible 
tool help evaluate the need for entitlements by wells pump-
ing in the river aquifer. To further understand temporal effects 
of pumping wells on the Colorado River, Reclamation set up 
a technical team to assess timing over which wells at great 
distance would deplete water in the Colorado River. Pos-
sible methods for calculating depletion of surface water from 
ground-water pumping range from simple analytical solutions 
to complex numerical ground-water flow models. For this 
study, an intermediate approach was taken, using numerical 
superposition models with complex horizontal geometry and 
simple vertical geometry. Six areas of the river aquifer along 
the lower Colorado River were modeled. Published transmis-
sivity values were analyzed to determine low and average 
transmissivity values. A value of 0.2 was used for the aquifer 
specific yield (or storage coefficient) in all models. All model 
grids consisted of one layer of cells, with model rows and 
columns oriented in east-west and north-south directions, 
respectively.

Distribution of depletion was simulated using MOD-
FLOW-2000. One simulation was done for each active cell in 
the model grid for each transmissivity value tested. Maps were 
prepared to show the simulated depletion at 100 years for one 
pumping well, as a function of the position of that well.

Areas in which simulated depletion at 100 years was less 
than or equal to 5 percent generally occurred only in side val-
leys with the lower or more conservative transmissivity values 
tested. For the smaller areas modeled, and for the river aquifer 
within the river valley adjacent to the flood plain in all models, 
simulated depletion at 100 years was generally in the range of 
10–100 percent of the pumping rate.
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Figure 7. Percent depletion in 100 years by pumping wells within the Virgin-Detrital model area of the Colorado 
River aquifer assuming a transmissivity rate of 980 feet squared per day (7,300 gallons per day per foot).
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Figure 7.  Percent depletion in 100 years by pumping wells within the Virgin-Detrital model
area of the Colorado River aquifer assuming a transmissivity value of 980 feet squared per day (7,300 gallons
per day per foot).
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Figure 8. Percent depletion in 100 years by pumping wells within the Virgin-Detrital model area of the Colorado 
River aquifer assuming a transmissivity rate of 6,300 feet squared per day (47,000 gallons per day per foot).
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Figure 8.  Percent depletion in 100 years by pumping wells within the Virgin-Detrital model
area of the Colorado River aquifer assuming a transmissivity value of 6,300 feet squared per day (47,000 gallons
per day per foot).
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Figure 9. Percent depletion in 100 years by pumping wells within the Virgin-Detrital model area of the Colorado 
River aquifer assuming a transmissivity rate of 26,200 feet squared per day (196,000 gallons per day per foot).
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Figure 9.  Percent depletion in 100 years by pumping wells within the Virgin-Detrital model
area of the Colorado River aquifer assuming a transmissivity value of 26,200 feet squared per day
(196,000 gallons per day per foot).
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Figure 10. Percent depletion in 100 years by pumping wells within the Lake Mohave model area of the 
Colorado River aquifer assuming a transmissivity rate of 6,300 and 26,200 feet squared per day (47,000 and 
196,000 gallons per day per foot).
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Figure 10.  Percent depletion in 100 years by pumping wells within the Lake Mohave
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Figure 11. Percent depletion in 100 years by pumping wells within the Mohave Valley model area of the Colorado 
River aquifer assuming a transmissivity rate of 6,300 and 26,200 feet squared per day (47,000 and 196,000 gallons 
per day per foot).
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Figure 11.  Percent depletion in 100 years by pumping wells within the Virgin-Detrital model
area of the Colorado River aquifer assuming transmissivity values of 6,300 and 26,200 feet squared per day
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Figure 12.  Percent depletion in 100 years by pumping wells within the Parker-Palo Verde-Cibola model
area of the Colorado River aquifer assuming a transmissivity value of 6,300 feet squared per day (47,000 gallons per day per foot).
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Figure 12. Percent depletion in 100 years by pumping wells within the Parker-Palo Verde-Cibola model area of the Colorado River aquifer 
assuming a transmissivity rate of 6,300 feet squared per day (47,000 gallons per day per foot).
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Figure 14. Percent depletion in 100 years by pumping wells within the Yuma and Laguna model areas of the 
Colorado River aquifer assuming a transmissivity rate of 6,300 feet squared per day (47,000 gallons per day per foot).
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Figure 14.  Percent depletion in 100 years by pumping wells within the Yuma and Laguna model areas of
the Colorado River aquifer assuming a transmissivity value of 6,300 feet squared per day (47,000 gallons per day per foot).
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Figure 15. Percent depletion in 100 years by pumping wells within the Yuma and Laguna model areas of the Colorado River 
aquifer assuming a transmissivity rate of 26,200 feet squared per day (196,000 gallons per day per foot).
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Figure 15.  Percent depletion in 100 years by pumping wells within the Yuma and Laguna model areas of
the Colorado River aquifer assuming a transmissivity value of 26,200 feet squared per day (196,000 gallons per day per foot).
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Figure 16. Percent depletion in 100 years by pumping wells within the Yuma model area of the Colorado River aquifer 
assuming a transmissivity rate of 15,500 feet squared per day (116,000 gallons per day per foot).
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Figure 16.  Percent depletion in 100 years by pumping wells within the Yuma model area of the Colorado River aquifer assuming
a transmissivity value of 15,500 feet squared per day (116,000 gallons per day per foot).
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Figure 17. Percent depletion in 100 years by pumping wells within the Yuma model area of the Colorado River aquifer 
assuming a transmissivity rate of 45,900 feet squared per day (343,000 gallons per day per foot).
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Figure 17.  Percent depletion in 100 years by pumping wells within the Yuma model area of the Colorado River aquifer assuming
a transmissivity value of 45,900 feet squared per day (343,000 gallons per day per foot).
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